Installing and
Managing Python

Lab Objective: One of the great advantages of Python is its lack of overhead: it is relatively easy
to download, install, start up, and execute. This appendiz introduces tools for installing and updating
specific packages and gives an overview of possible environments for working efficiently in Python.

Installing Python via Anaconda

A Python distribution is a single download containing everything needed to install and run Python,
together with some common packages. For this curriculum, we strongly recommend using the
Anaconda distribution to install Python. Anaconda includes IPython, a few other tools for developing
in Python, and a large selection of packages that are common in applied mathematics, numerical
computing, and data science. Anaconda is free and available for Windows, Mac, and Linux.

Follow these steps to install Anaconda.
1. Go to https://www.anaconda.com/download/.
2. Download the Python 3.6 graphical installer specific to your machine.
3. Open the downloaded file and proceed with the default configurations.

For help with installation, see https://docs.anaconda.com/anaconda/install/. This page
contains links to detailed step-by-step installation instructions for each operating system, as well as
information for updating and uninstalling Anaconda.

ACHTUNG!

This curriculum uses Python 3.6, not Python 2.7. With the wrong version of Python, some
example code within the labs may not execute as intended or result in an error.

Managing Packages

A Python package manager is a tool for installing or updating Python packages, which involves
downloading the right source code files, placing those files in the correct location on the machine,
and linking the files to the Python interpreter. Never try to install a Python package without using
a package manager (see https://xkcd.com/349/).

165

166 Appendix B. Installing and Managing Python

Conda

Many packages are not included in the default Anaconda download but can be installed via Ana-
conda’s package manager, conda. See https://docs.anaconda.com/anaconda/packages/pkg-docs
for the complete list of available packages. When you need to update or install a package, always
try using conda first.

Command Description
conda install <package-name> | Install the specified package.
conda update <package-name> Update the specified package.

conda update conda Update conda itself.
conda update anaconda Update all packages included in Anaconda.
conda --help Display the documentation for conda.

For example, the following terminal commands attempt to install and update matplotlib.

$ conda update conda # Make sure that conda is up to date.
$ conda install matplotlib # Attempt to install matplotlib.
$ conda update matplotlib # Attempt to update matplotlib.

See https://conda.io/docs/user-guide/tasks/manage-pkgs.html for more examples.

NOTE
The best way to ensure a package has been installed correctly is to try importing it in IPython.

Start IPython from the command line.
$ ipython
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

Try to import matplotlib.
In [1]: from matplotlib import pyplot as plt # Success!

ACHTUNG!

Be careful not to attempt to update a Python package while it is in use. It is safest to update
packages while the Python interpreter is not running.

Pip

The most generic Python package manager is called pip. While it has a larger package list, conda is
the cleaner and safer option. Only use pip to manage packages that are not available through conda.

167

Command Description

pip install package-name Install the specified package.

pip install --upgrade package-name | Update the specified package.

pip freeze Display the version number on all installed packages.
pip --help Display the documentation for pip.

See https://pip.pypa.io/en/stable/user_guide/ for more complete documentation.

Workflows

There are several different ways to write and execute programs in Python. Try a variety of workflows
to find what works best for you.

Text Editor + Terminal

The most basic way of developing in Python is to write code in a text editor, then run it using either
the Python or IPython interpreter in the terminal.

There are many different text editors available for code development. Many text editors are
designed specifically for computer programming which contain features such as syntax highlighting
and error detection, and are highly customizable. Try installing and using some of the popular text
editors listed below.

e Atom: https://atom.io/

e Sublime Text: https://www.sublimetext.com/

Notepad++ (Windows): https://notepad-plus-plus.org/

Geany: https://www.geany.org/

Vim: https://www.vim.org/

e Emacs: https://wuw.gnu.org/software/emacs/

Once Python code has been written in a text editor and saved to a file, that file can be executed
in the terminal or command line.

$ 1s # List the files in the current directory.

hello_world.py

$ cat hello_world. # Print the contents of the file to the terminal.
py

print ("hello, world!")

$ python hello_world.py # Execute the file.

hello, world!

Alternatively, start IPython and run the file.
$ ipython
IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: %run hello_world.py
hello, world!

168 Appendix B. Installing and Managing Python

IPython is an enhanced version of Python that is more user-friendly and interactive. It has
many features that cater to productivity such as tab completion and object introspection.

NOTE

While Mac and Linux computers come with a built-in bash terminal, Windows computers do
not. Windows does come with Powershell, a terminal-like application, but some commands in
Powershell are different than their bash analogs, and some bash commands are missing from
Powershell altogether. There are two good alternatives to the bash terminal for Windows:

e Windows subsystem for linux: docs.microsoft.com/en-us/windows/wsl/.

o Git bash: https://gitforwindows.org/.

Jupyter Notebook

The Jupyter Notebook (previously known as IPython Notebook) is a browser-based interface for
Python that comes included as part of the Anaconda Python Distribution. It has an interface similar
to the IPython interpreter, except that input is stored in cells and can be modified and re-evaluated
as desired. See https://github.com/jupyter/jupyter/wiki/ for some examples.

To begin using Jupyter Notebook, run the command jupyter notebook in the terminal. This
will open your file system in a web browser in the Jupyter framework. To create a Jupyter Notebook,
click the New drop down menu and choose Python 3 under the Notebooks heading. A new tab
will open with a new Jupyter Notebook.

Jupyter Notebooks differ from other forms of Python development in that notebook files contain
not only the raw Python code, but also formatting information. As such, Juptyer Notebook files
cannot be run in any other development environment. They also have the file extension .ipynb
rather than the standard Python extension .py.

Jupyter Notebooks also support Markdown—a simple text formatting language—and KTEX,
and can embedded images, sound clips, videos, and more. This makes Jupyter Notebook the ideal
platform for presenting code.

Integrated Development Environments

An integrated development environment (IDEs) is a program that provides a comprehensive environ-
ment with the tools necessary for development, all combined into a single application. Most IDEs
have many tightly integrated tools that are easily accessible, but come with more overhead than a
plain text editor. Consider trying out each of the following IDEs.

e JupyterLab: http://jupyterlab.readthedocs.io/en/stable/

e PyCharm: https://www.jetbrains.com/pycharm/

e Spyder: http://code.google.com/p/spyderlib/

e Eclipse with PyDev: http://www.eclipse.org/, https://www.pydev.org/

See https://realpython.com/python-ides-code-editors-guide/ for a good overview of these
(and other) workflow tools.

NumPy Visual Guide

Lab Objective: NumPy operations can be difficult to visualize, but the concepts are straightforward.
This appendiz provides visual demonstrations of how NumPy arrays are used with slicing syntaz,
stacking, broadcasting, and axis-specific operations. Though these visualizations are for 1- or 2-
dimensional arrays, the concepts can be extended to n-dimensional arrays.

Data Access

The entries of a 2-D array are the rows of the matrix (as 1-D arrays). To access a single entry, enter
the row index, a comma, and the column index. Remember that indexing begins with 0.

(X X X X X] X X X X X
X X X X X X X X X X
Af0] = A[2,1] =
X X X X X X X X X
X X X X X X X X X X

Slicing

A lone colon extracts an entire row or column from a 2-D array. The syntax [a:b] can be read as
“the ath entry up to (but not including) the bth entry.” Similarly, [a:] means “the ath entry to the
end” and [:b] means “everything up to (but not including) the bth entry.”

X X X X X x X |x|] x x
X X X X x] X X |[x|] x x
Al1] =A[1,:]1 = [A[:,2] =
X X X X X X X |x| x x
X X X X X X X |x| x x
X X X X X X X X X X
X X| x x x X [x x x| x
Al1:,:2] = Al1:-1,1:-1] =
X X| X X X X |x x x| x
X X| X X X X X X X X

169

170 Appendix C. NumPy Visual Guide

Stacking

np.hstack() stacks sequence of arrays horizontally and np.vstack() stacks a sequence of arrays
vertically.

X X X *
A= X X X B=| x*
X X X * % %
X X X ¥ X X X

np.hstack((A,B,A)) =

X
X
X
¢ %
X
X
X

X X X

%

np.vstack((A,B,A)) =

%

%
X X X % % ¥ X X X
X X X % ¥ ¥ X X X

X X X

Because 1-D arrays are flat, np.hstack() concatenates 1-D arrays and np.vstack() stacks them
vertically. To make several 1-D arrays into the columns of a 2-D array, use np.column_stack().

np.hstack((x,y,x)):[x X X X k% % *x X X X x}

X % X
X X

X % X

np.vstack((x,y,x)) = | * * % % np.column_stack((x,y,x)) = DR
X X X

X % X

The functions np.concatenate() and np.stack() are more general versions of np.hstack() and
np.vstack(), and np.row_stack() is an alias for np.vstack().

Broadcasting

NumPy automatically aligns arrays for component-wise operations whenever possible. See http:
//docs.scipy.org/doc/numpy/user/basics.broadcasting.html for more in-depth examples and
broadcasting rules.

171

x=[10 20 30]

=

Il
—_ = =
N NN
W w w

1 2 3
L2 3 11 22 33
A+ x=LL 2 3 —| 11 22 33
+ 11 22 33
[10 20 30]
1 2 3 10 11 12 13
A + x.reshape((1,-1)) =] 1 2 3 |+ | 20 =121 22 23
1 2 3 30 31 32 33

Operations along an Axis

Most array methods have an axis argument that allows an operation to be done along a given axis.
To compute the sum of each column, use axis=0; to compute the sum of each row, use axis=1.

[S R
NN NN
W W w w
N

A.sum(axis=0) =

=[4 8 12 16 |

e)
NN NN
W W w w
N S

—_

=[10 10 10 10]

A.sum(axis=1) =

== =
DI NN
WlWw|Ww|Ww
(SN SNy TSN TSN

